Flow-Based Video Recognition

Jifeng Dai

Visual Computing Group, Microsoft Research Asia

Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns)

Talk pipeline

- Introduction
- Deep Feature Flow for Video Recognition
- Flow-Guided Feature Aggregation for Video Object Detection
- Summary

From image to video

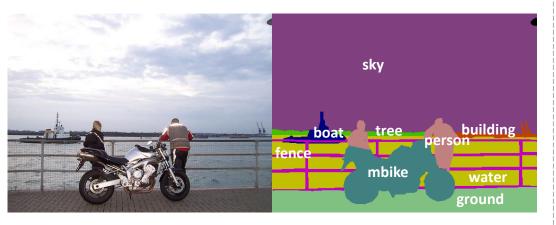


image semantic segmentation

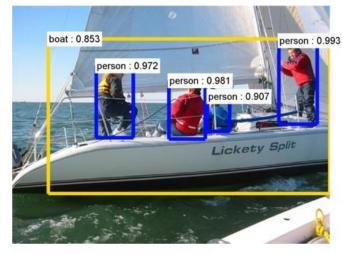
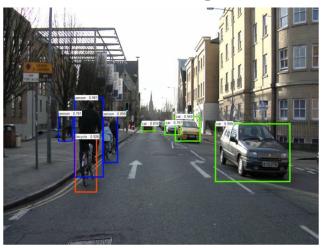


image object detection

video semantic segmentation



video object detection

Per-frame recognition in video is problematic

High Computational Cost

Infeasible for practical needs

Task	Image Size	ResNet-50	ResNet-101
Detection	1000x600	6.27 fps	4.05 fps
Segmentation	2048x1024	2.24 fps	1.52 fps

FPS: frames per second (NVIDIA K40 and Intel Core i7-4790)

Deteriorated Frame Appearance Poor feature and recognition accuracy

Exploit frame motion to do better

- Feature propagation for **speed up** (CVPR 2017)
 - Propagate features on sparse key frames to others
 - Up to **10x** faster at moderate accuracy loss
- Feature aggregation for **better accuracy** (ICCV 2017)
 - Aggregate features on near-by frames to current frame
 - Enhanced feature, better recognition result
- Joint training of flow and recognition in DNN
- Clean, end-to-end, general
- Powering the winner of ImageNet VID 2017

key frame

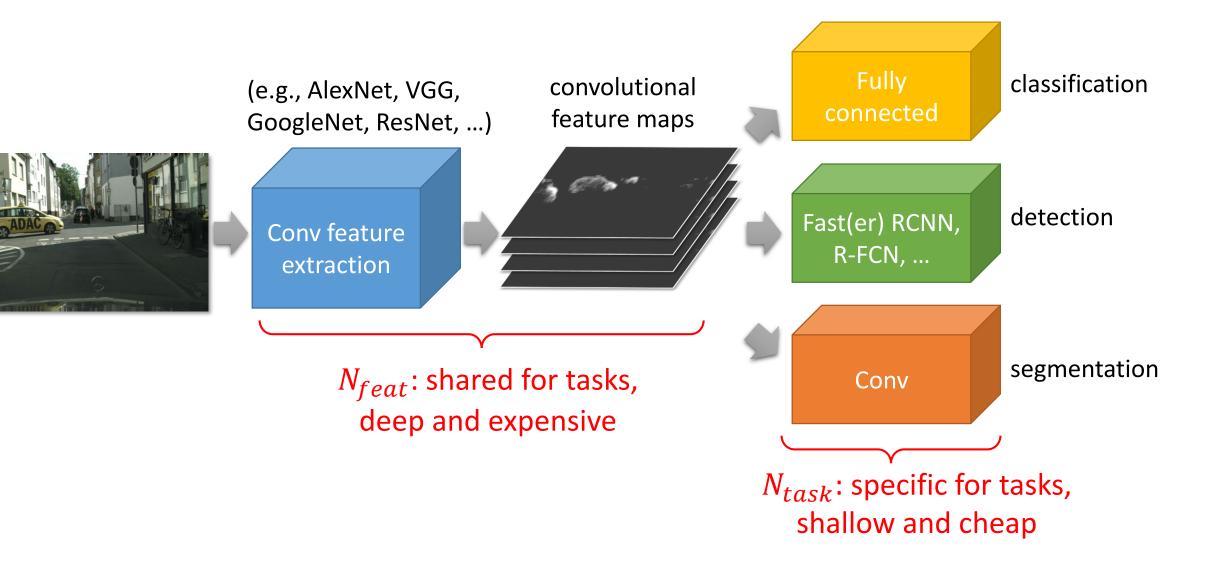
flow field

current frame

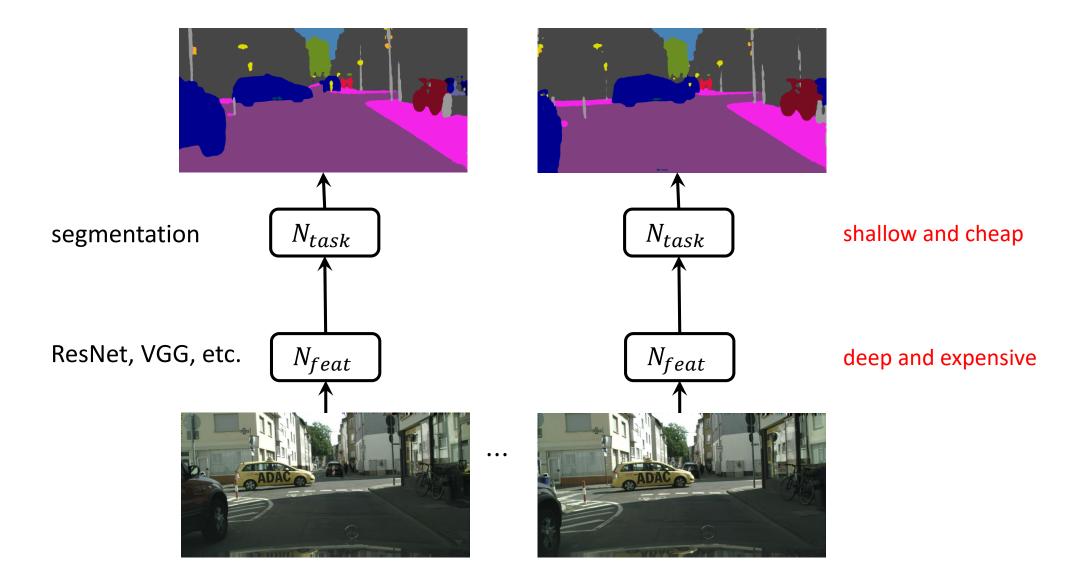
Talk pipeline

- Introduction
- Deep Feature Flow for Video Recognition
- Flow-Guided Feature Aggregation for Video Object Detection
- Summary

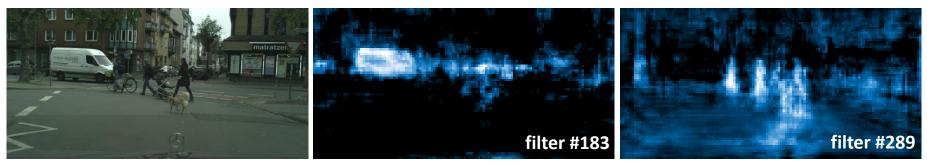
Modern structure for image recognition



Per-frame baseline

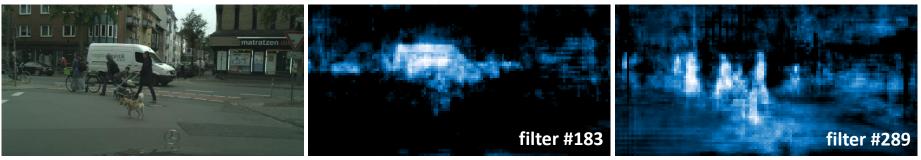


Deep feature flow: key idea



key frame

key frame feature maps



current frame

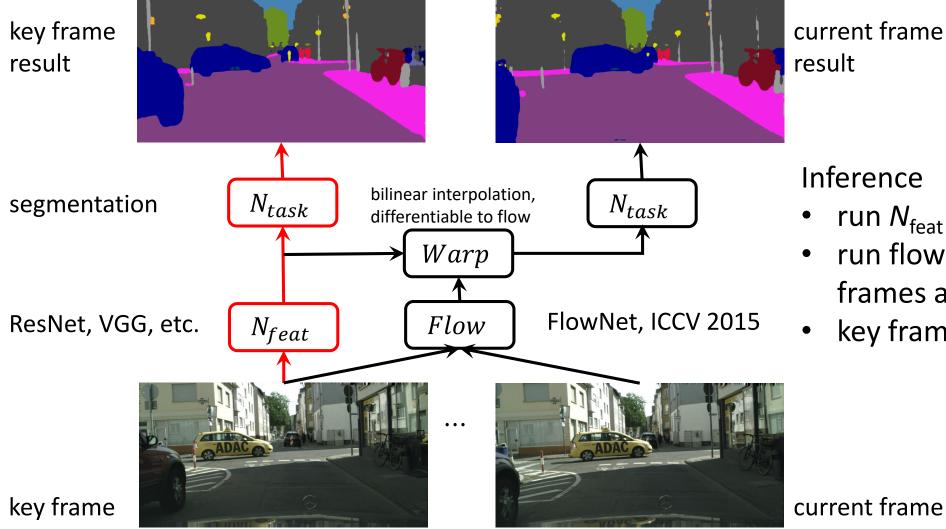
current frame feature maps



flow field

warped from key frame to current frame

Deep feature flow: network structure

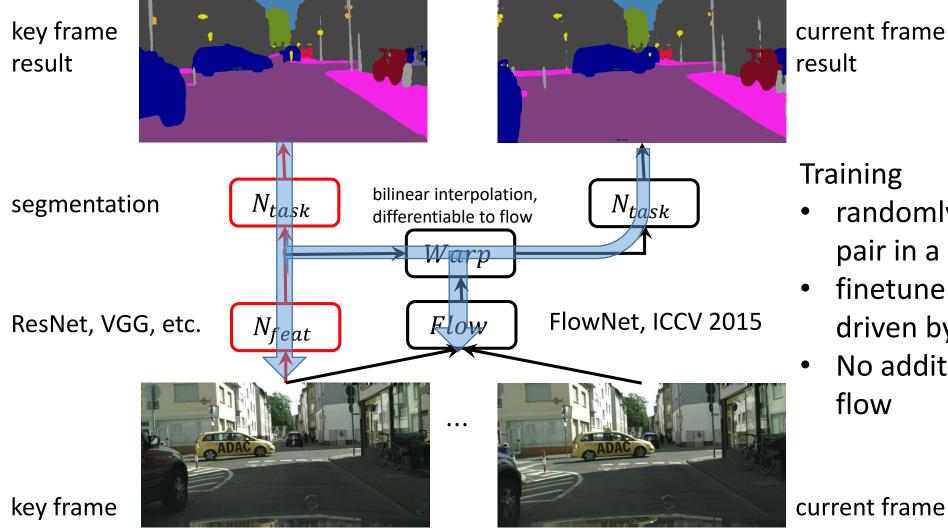


result

Inference

- run N_{feat} for each key frame
- run flow branch for a few frames after key frame
- key frame is sparse

Feature propagation: training



current frame result

Training

- randomly sample a frame pair in a minibatch
- finetune all the modules driven by the recognition task
- No additional supervision for flow

Computational complexity analysis

• Per-frame computation ratio
$$r = \frac{O(F) + O(W) + O(N_{task})}{O(N_{feat}) + O(N_{task})} \approx \frac{O(F)}{O(N_{feat})} \ll 1$$

computation on key frame

• Flow *F* is much cheaper than feature extraction *N_{feat}*

$N_{feat} \setminus F$	FlowNet	FlowNet Half (1/4 of FlowNet)	FlowNet Inception (1/8 of FlowNet)
ResNet-50	9.20	33.56	68.97
ResNet-101	12.71	46.30	95.24

default setting

As $r \ll 1$, here we show $\frac{1}{r}$ for clarify.

Experiment datasets

task	semantic segmentation	object detection
dataset	CityScapes	ImageNet VID
frames per second	17	25 or 30
key frame duration	5	10
#semantic categories	30	30
#videos	train 2975, validation 500, test 1525	train 3862, validation 555, test 937
#frames per video	30	6~5492
annotation	every 20 th frame	all frames
evaluation metric	mIoU (mean of Intersection-over-Union)	mAP (mean of Average Precision)

key frame duration is manually chosen to fit the application needs for accuracy-speed trade-off

- 1. a long duration saves more feature computation but has lower accuracy as flow is less accurate
- 2. vice versa for a short duration

Ablation study: results on two tasks

method \ task	segment	ation	on CityScapes	detectio	n	on ImageNet VID	
method \ metric	mloU	(%)	runtime (fps)	mAP (%	5)	runtime (fps)	
Frame (oracle baseline)	<u>71.</u>	<u>L</u>	1.52	<u>73.9</u>		4.05	
SFF: shallow feature flow (SIFT)					_		
SFF-slow	67.8	3	0.08	70.7		0.26	
SFF-fast	67.3	3	0.95	69.7		3.04	
DFF: deep feature flow							
DFF	69.2	?	5.60	73.1		20.25	
DFF fix N	68.8	3	5.60	72.3		20.25	
DFF fix F	67.0)	5.60	68.8		20.25	
DFF separate	66.9)	5.60	67.4		20.25	

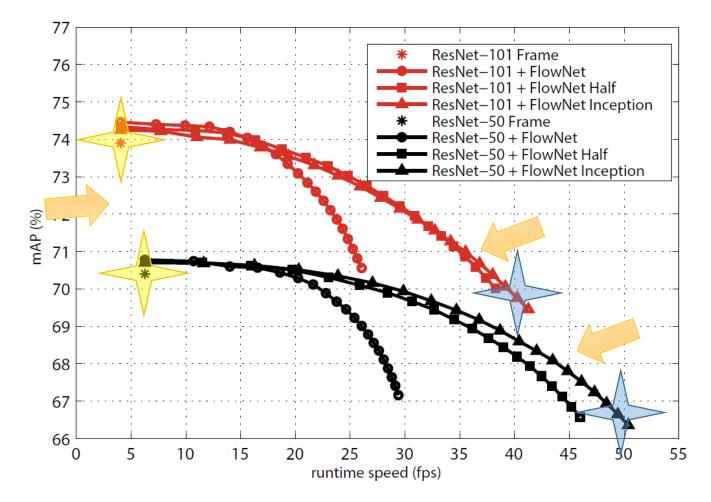
1. DFF is much faster than singe *Frame* baseline at moderate accuracy loss

2. Using off-the-shelf flow algorithm is worse

3. Joint end-to-end training is effective

Accuracy-speedup tradeoff by varying N_{feat} and F

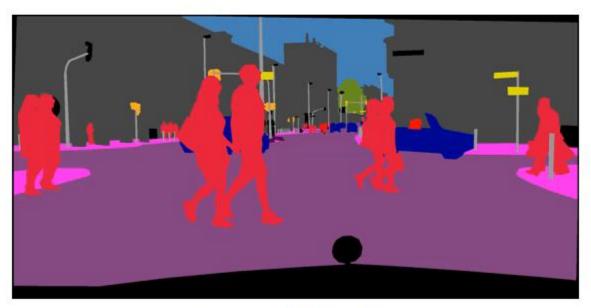
- Significant speedup with decent accuracy drop (10X faster, 4.4% accuracy drop)
- How to choose flow function?
 - Cheapest FlowNet Inception is the best
- How to choose conv. features?
 - ResNet101 is better



ImageNet VID detection (5354 videos, 25 ~ 30 fps)

Cityscapes Dataset (17 fps, 1024 x 2048)

only single frame is annotated in each snippets (30 frames)



Ground truth

Our results

Talk pipeline

- Introduction
- Deep Feature Flow for Video Recognition
- Flow-Guided Feature Aggregation for Video Object Detection
- Summary

Deteriorated appearance in videos

How to improve video object detection

Post-processing: box level

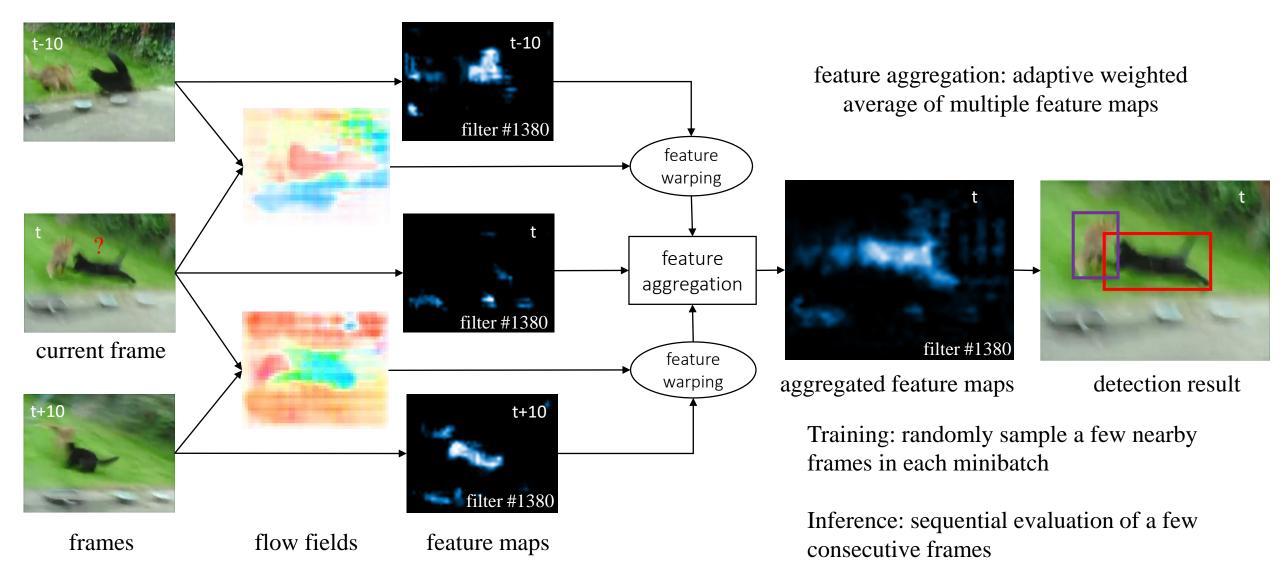
- Manipulation of detected boxes
 - e.g., tracking over multi-frames
- Heuristic, heavily engineered
- Widely used in competition

Better feature learning: feature level

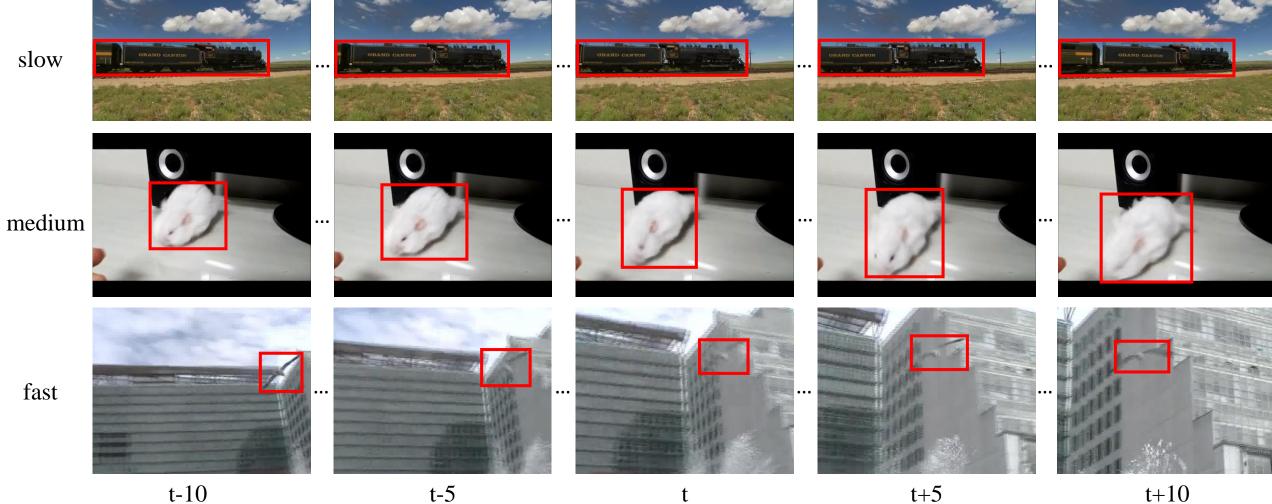
- Enhance deep features
 - learning over multi-frames
- Principled, clean
- Rarely studied

First end-to-end DNN work for video object detection

Flow-guided feature aggregation

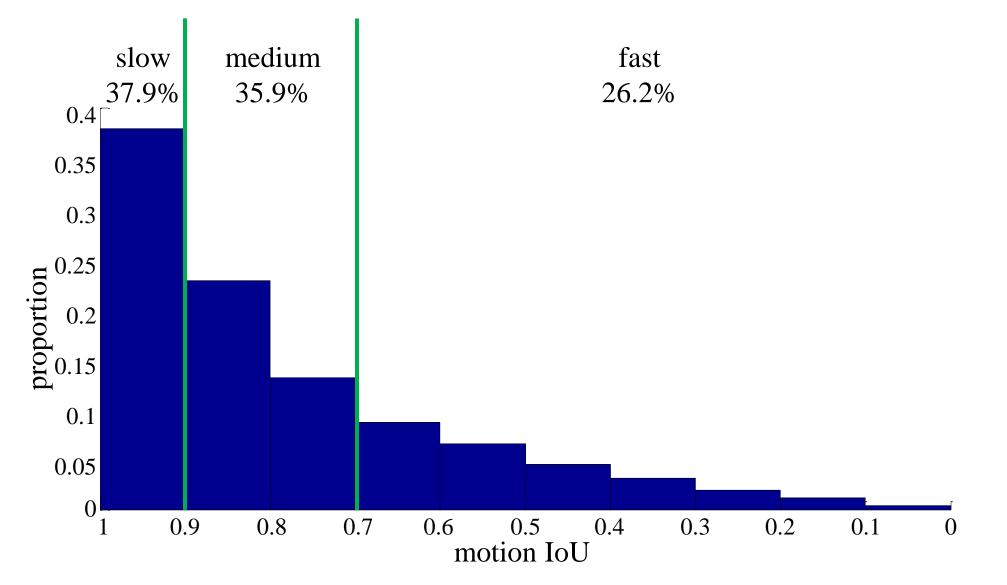


Use motion IoU to measure object speed



t-10

Categorization of object speed



Ablation study results on ImageNet VID

methods	Single frame baseline	Ours (no flow/weights)	Ours (no flow)	Ours	Ours (no e2e training)
multi-frame aggregation		V	V	V	V
adaptive weights			\checkmark	\checkmark	\checkmark
flow guided				V	\checkmark
end-to-end training		V	V	V	
mAP (%)	73.4	72.0	74.3	76.3 (个 2.9)	74.5
mAP (%) (slow)	82.4	82.3	82.2	83.5 (个1.1)	82.5
mAP (%) (medium)	71.6	74.5	74.6	<i>75.8 (个4.2)</i>	74.6
mAP (%) (fast)	51.4	44.6	52.3	57.6 (个6.2)	53.2
runtime (ms)	288	288	305	733	733

1. All components (flow, adaptive weighting, end-to-end learning) are important.

2. Especially effective on fast (difficult) objects

3. Slower as flow computation takes time

#frames in training and inference

#test frames	1	5	9	13	17	21*	25
mAP (%) 2* frames in train	70.6	72.3	72.8	73.4	73.7	74.0	74.1
mAP (%) 5 frames in train	70.6	72.4	72.9	73.3	73.6	74.1	74.1
runtime (ms)	203	330	406	488	571	647	726

*: default parameter

- More frames in inference is better (saturated at 21)
- 2 frames in training is sufficient (frame skip randomly sampled)

Integration with post-processing techniques

- Complementary with postprocessing techniques
- A clean solution with state-ofthe-art performance (80.1 mAP)
 - ImageNet VID 2016 winner: 81.2
 - Highly engineered with various tricks, not used in ours

method	feature network	mAP (%)	runtime (ms)	
single-frame baseline		73.4	288	
+ MGP	ResNet-101	74.1	574*	
+ Tubelet rescoring	Keshet-101	75.1	1662	
+ Seq-NMS		76.8	433*	
FGFA		76.3	733	
+ MGP	ResNet-101	75.5	1019*	
+ Tubelet rescoring	Resnet-101	76.6	1891	
+ Seq-NMS		<u>78.4</u>	873*	
FGFA	Aligned-	77.8	819	
+ Seq-NMS	Inception-ResNet	80.1	954*	

Table 4. Results of baseline method and FGFA before and after combination with box level techniques. As for runtime, entry marked with * utilizes CPU implementation of box-level techniques.

Powering the winner of ImageNet VID 2017

Team name	Entry description	Number of object categories won	mean AP			
IC&USYD	provide_submission3	15	0.817265			
IC&USYD	provide_submission1	6	0.808847			
IC&USYD	provide_submission2	4	0.818309			
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + mca + mcs	3	0.757772			Flow acceleration[1,2] is used. Final scores are adaptively chose
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + vcm + mcs	1	0.757853		Jiankang Deng(1), Yuxiang Zhou(1), Baosheng Yu(2), Zhe	between the detector and tracker. [1] Deep Feature Flow for Video Recognition
NUS-Qihoo- UIUC_DPNs (VID)	Faster RCNN + Video Context	1	0.748493	IC&USYD	Chen(2), Stefanos	Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei, Conference on Computer Vision and Pattern Recognition (CVPR 2017.
THU-CAS	merge-new	0	0.730498		College London,	2011.
THU-CAS	old-new	0	0.728707			[2] Flow-Guided Feature Aggregation for Video Object Detection
THU-CAS	new-new	0	0.691423		Sydney	Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. A
GoerVision	Deformable R-FCN single model+ResNet101	0	0.669631			tech report, 2017.
GoerVision	Ensemble 2 model, use ResNet101 as foundamental classification network and deformable R-FCN to detect video frames, multi-scale testing	0	0.665693			
GoerVision	o train the video objectWe use the ResNet101 and Deformable R-FCN for the detection.	0	0.655686			
GoerVision	Using R-FCN to detect video object, multi scale testing applied.	0	0.646965			
FACEALL_BUP	T SSD based on Resnet101 networks	0	0.195754			

Video demo

Results

Talk pipeline

- Introduction
- Deep Feature Flow for Video Recognition
- Flow-Guided Feature Aggregation for Video Object Detection
- Summary

Summary

- Exploit motion for video recognition tasks
 - Faster speed or better accuracy
- End-to-end, joint learning of optical flow and recognition tasks
- Feature learning instead of heuristics, general for different tasks
- Code available at
 - <u>https://github.com/msracver/Deep-Feature-Flow</u>
 - <u>https://github.com/msracver/Flow-Guided-Feature-Aggregation</u>

Related work on video semantic segmentation

- Clockwork convnets for video semantic segmentation, ECCV 2016
- Exploiting semantic information and deep matching for optical flow, ECCV 2016
- STFCN: spatio-temporal FCN for semantic video segmentation, arXiv 2016
- Joint optical flow and temporally consistent semantic segmentation, ECCV 2016 workshop
- Feature space optimization for semantic video segmentation, CVPR, 2016
- Optical flow with semantic segmentation and localized layers, CVPR, 2016
- No end-to-end training, only for semantic segmentation

Related work on video object detection

- Seq-nms for video object detection, arXiv 2016
- T-cnn: Tubelets with convolutional neural networks for object detection from videos, CVPR 2016
- Object detection from video tubelets with convolutional neural networks. In CVPR, 2016
- Object detection in videos with tubelet proposal networks. In CVPR, 2017
- No end-to-end training, post processing on box-level instead of feature-level

Future work

- Better flow learning and evaluation
- Better key frame scheduling
 - Better efficiency and accuracy, simultaneously
- Joint learning for detection and tracking
 - new losses (smoothness, box association) on temporal dimension
 - On the stability of video detection and tracking, arXiv 2016

Thanks! Q & A