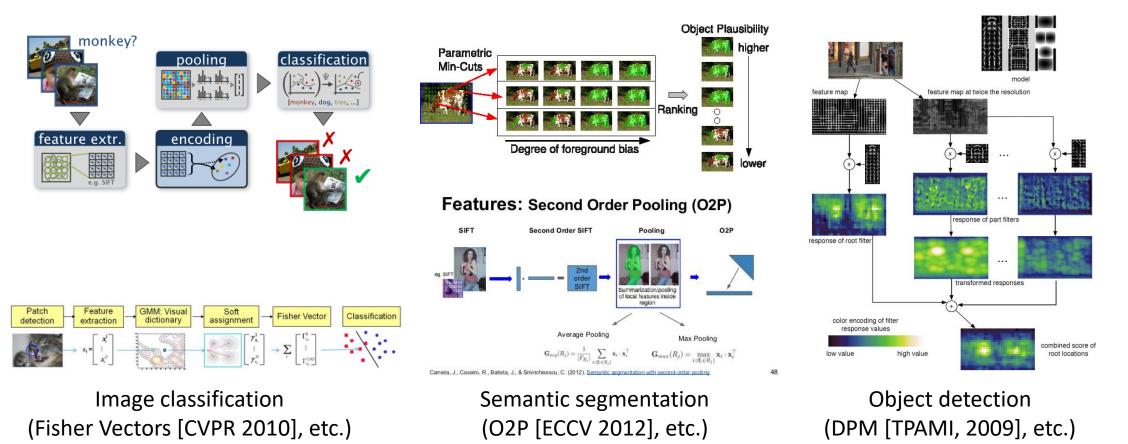
# VL-BERT: Pre-training of Generic Visual-Linguistic Representations

#### Jifeng Dai

With Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, and Furu Wei Published at ICLR 2020

#### Pre-training of Generic Representations: A Hallmark of Deep Network's Success

- Prior to the era of deep networks
  - Diverse hand-crafted features & designs
  - Un-shareable feature representations among different tasks

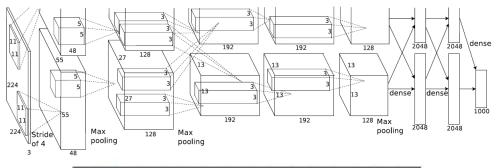


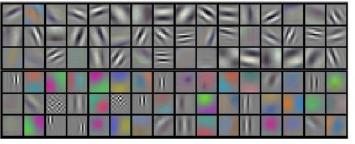
#### Pre-training of Generic Representations: A Hallmark of Deep Network's Success

Pre-training &

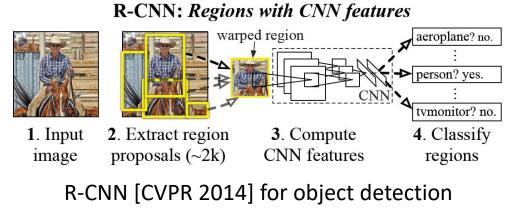
finetuning

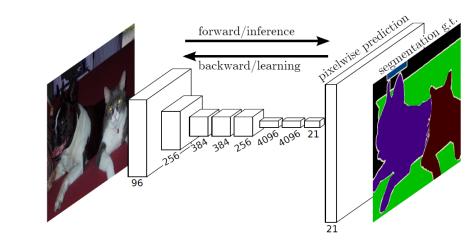
- Renaissance of deep networks in computer vision
  - Generic backbone + Task-specific headers
  - Pre-trainable generic representations





AlexNet [NIPS 2012] for image classification

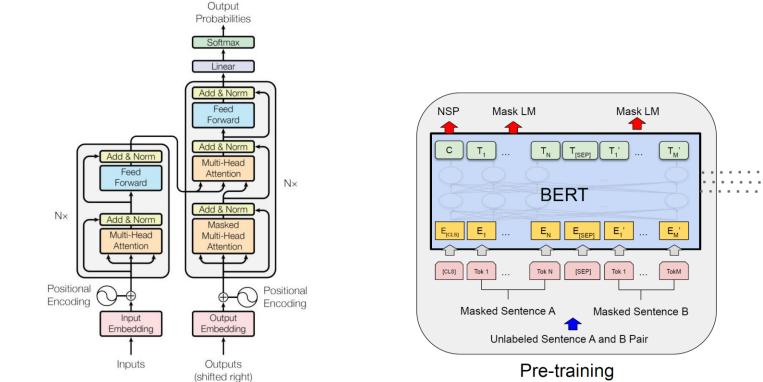




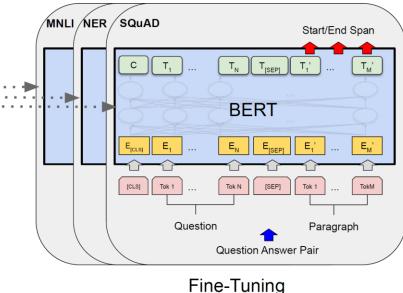
FCN [CVPR 2015] for semantic segmentation

#### Pre-training of Generic Representations: A Hallmark of Deep Network's Success

• Recent leap forward in Natural Language Processing (NLP)



Transformer [NIPS 2017]



BERT [NAACL 2019]

## **Pre-training for Visual-Linguistic Tasks?**

#### • Various visual-linguistic tasks

Where is the child sitting? fridge arms





Make the V in VQA Matter [CVPR 2017]



"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

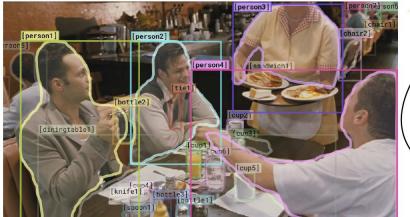
#### Image captioning

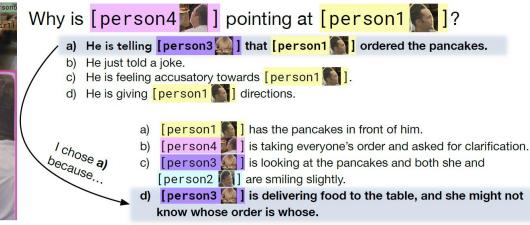


blurry person with sleeveless and sitting

d sitting man in full view in all black

Modeling context in referring expressions [ECCV 2016]

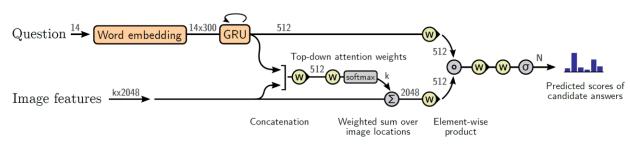


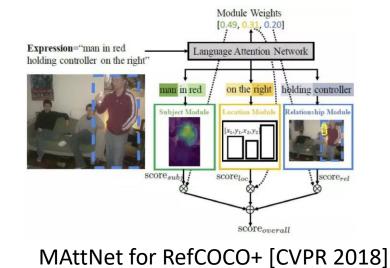


From recognition to cognition: visual commonsense reasoning [CVPR 2019]

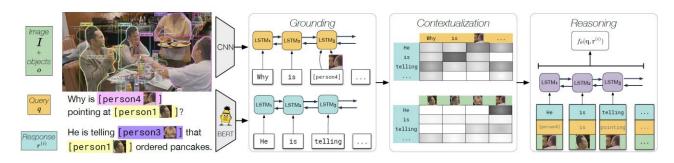
## **Pre-training for Visual-Linguistic Tasks?**

- Numerous task-specific networks
  - Ad-hoc design, un-shareable representations
  - Key goal: to aggregate the multi-modal info





BUTD for VQA [CVPR 2018]



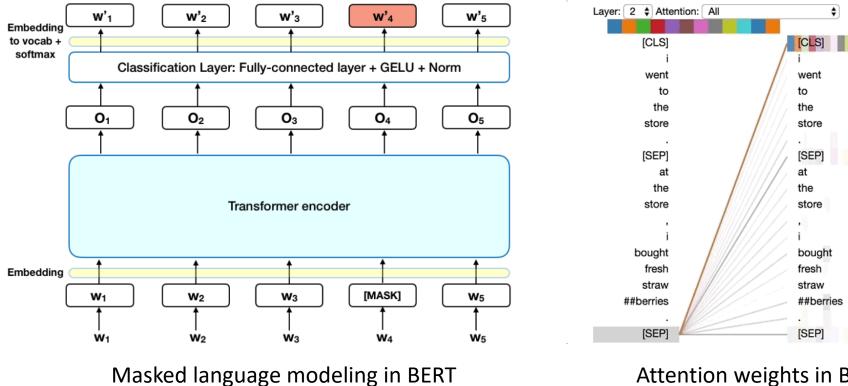
"straw" "hat" END  $y_t$   $W_{hh}$   $W_{hh}$  $W_{hh}$ 

DVSA for image captioning [CVPR 2015]

R2C for VCR [CVPR 2019]

#### **Revisit BERT Model**

- Flexible and powerful in aggregating and aligning word features
  - Self-contained embeddings + Transformer attention + masked language modeling

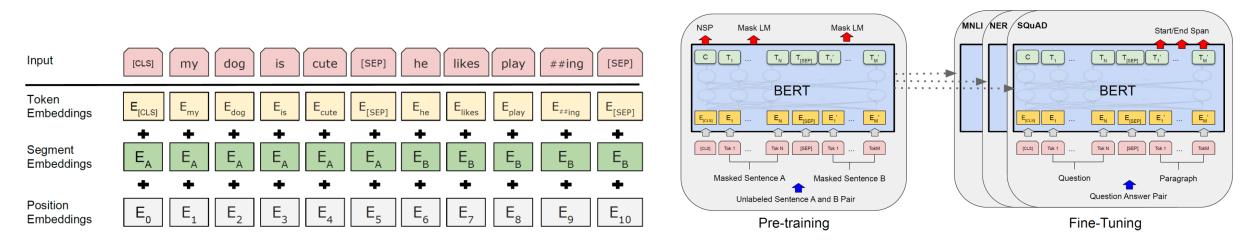


Attention weights in BERT

٥

#### **Revisit BERT Model**

- Flexible and powerful in aggregating and aligning word features
  - Self-contained embeddings + Transformer attention + masked language modeling

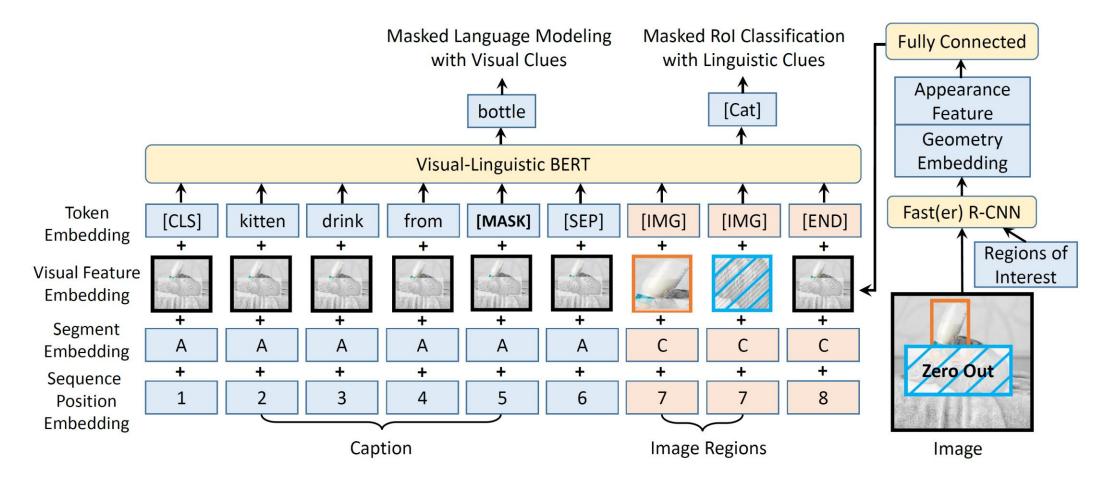


Embedded features in BERT

Pre-training & finetuning of BERT

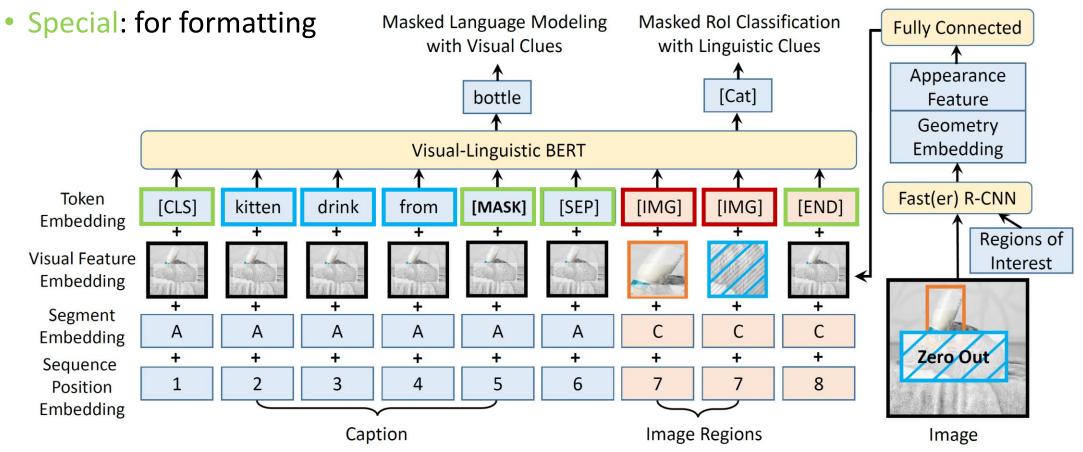
#### **VL-BERT: Pre-training of Generic Visual-Linguistic Representations**

- Model architecture
  - Modified from original BERT to accommodate the visual contents



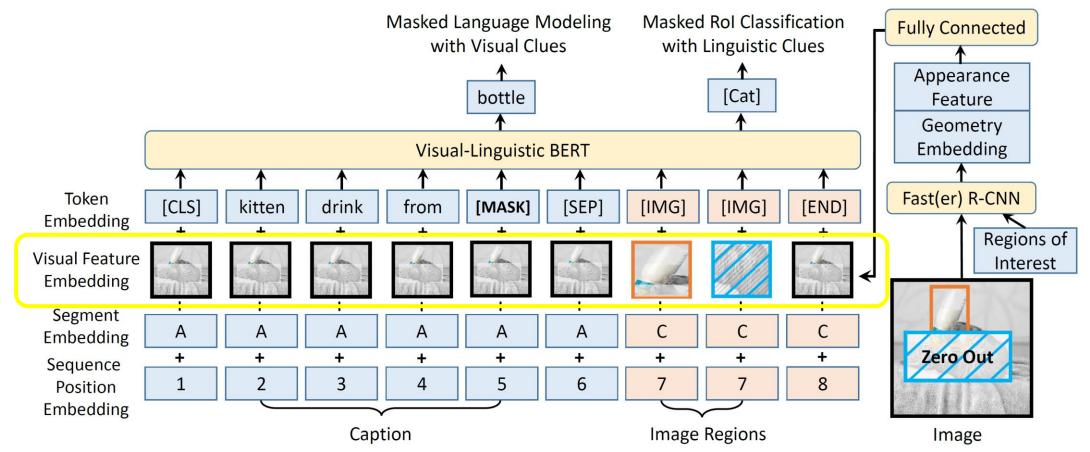
## **Model Architecture of VL-BERT**

- Input elements
  - Visual: region-of-interests (Rols) in image
  - Linguistic: words in sentences



## **Model Architecture of VL-BERT**

- Feature embeddings
  - Token, segment, and sequence position embeddings are the same as BERT
  - Visual feature embeddings are newly introduced for each element

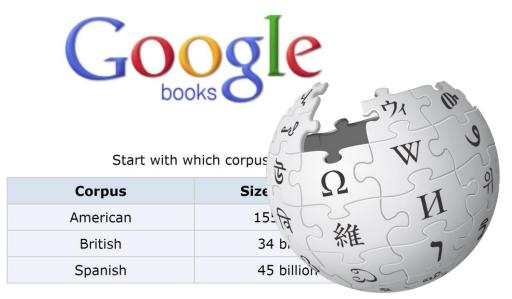


## **Pre-training VL-BERT**

- Pre-training on both visual-linguistic and text-only corpus
  - Conceptual Captions: ~3.3M image caption pairs, harvested from web, simple clauses
  - BooksCorpus & English Wiki: long and complex sentences, utilized in pre-training BERT



Conceptual Captions [ACL 2018]



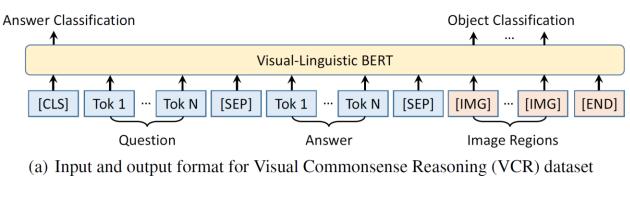
#### WIKIPEDIA The Free Encyclopedia

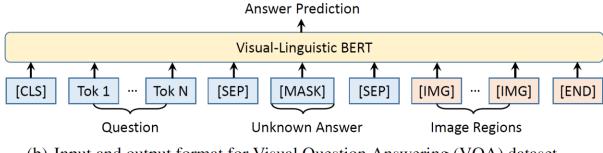
BooksCorpus [ICCV 2015] & English Wiki

## **Pre-training VL-BERT**

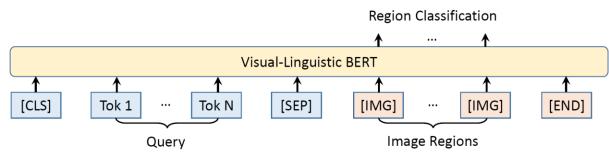
- Pre-training on Conceptual Captions
  - Input format: <Caption, Image>
  - Task #1: Masked Language Modeling with Visual Clues
  - Task #2: Masked Rol Classification with Linguistic Clues
- Pre-training on BooksCorpus & English Wiki
  - Input format: <Text, Null>
  - Task: Standard Masked Language Modeling as in BERT
- End-to-end training, with all the parameters updated

#### **Fine-tuning VL-BERT on Downstream Tasks**





(b) Input and output format for Visual Question Answering (VQA) dataset



(c) Input and output format for Referring Expression task on RefCOCO+ dataset

## **Related Work**

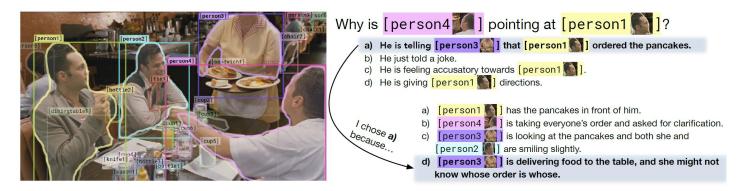
#### • Video BERT [ICCV 2019]

- First work seeking to conduct pre-training for visual-linguistic tasks
- Abrupt clustering of video clips, considerable loss in visual content info
- Applied on videos only, of linear structure same as sentences
- Concurrent works on image-based visual-linguistic tasks
  - Indicating the importance of the problem
  - Noticeable difference between VL-BERT and other concurrent works
    - We found the task of Sentence-Image Relationship Prediction used in all other concurrent works is of no help in pre-training visual-linguistic representations.
    - Pre-training on both visual-linguistic and text-only datasets. We found such joint pretraining improves the generalization over long and complex sentences.
    - Improved tuning of the visual representation.

|                                                    | Method                            | Architecture                                                                                                       | Visual Token | Pre-train Datasets                                                                                         | Pre-train Tasks                                                                                                                                                                                           | Downstream Tasks                                                                                                                                                                         |
|----------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Published<br>Works                                 | VideoBERT<br>(Sun et al., 2019b)  | single cross-modal Transformer                                                                                     | video frame  | Cooking312K<br>(Sun et al., 2019b)                                                                         | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> <li>masked visual-words prediction</li> </ol>                                                                                    | <ol> <li>zero-shot action classification</li> <li>video captioning</li> </ol>                                                                                                            |
|                                                    | CBT<br>(Sun et al., 2019a)        | two single-modal Transformer<br>(vision & language respectively)<br>+ one cross-modal Transformer                  | video frame  | Cooking312K<br>(Sun et al., 2019b)                                                                         | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> <li>masked visual-feature regression</li> </ol>                                                                                  | <ol> <li>action anticipation</li> <li>video captioning</li> </ol>                                                                                                                        |
|                                                    | ViLBERT<br>(Lu et al., 2019)      | one single-modal Transformer<br>(language)<br>+ one cross-modal Transformer<br>(with restricted attention pattern) | image RoI    | Conceptual Captions<br>(Sharma et al., 2018)                                                               | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> <li>masked visual-feature classification</li> </ol>                                                                              | <ol> <li>visual question answering</li> <li>visual commonsense reasoning</li> <li>grounding referring expressions</li> <li>image retrieval</li> <li>zero-shot image retrieval</li> </ol> |
|                                                    | B2T2<br>(Alberti et al., 2019)    | single cross-modal Transformer                                                                                     | image RoI    | Conceptual Captions<br>(Sharma et al., 2018)                                                               | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> </ol>                                                                                                                            | 1) visual commonsense reasoning                                                                                                                                                          |
| Works<br>Under<br>Review /<br>Just Got<br>Accepted | LXMERT<br>(Tan & Bansal, 2019)    | two single-modal Transformer<br>(vision & language respectively)<br>+ one cross-modal Transformer                  | image RoI    | ‡ COCO Caption<br>+ VG Caption<br>+ VG QA<br>+ VQA<br>+ GQA                                                | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> <li>masked visual-feature classification</li> <li>masked visual-feature regression</li> <li>visual question answering</li> </ol> | <ol> <li>visual question answering</li> <li>natural language visual reasoning</li> </ol>                                                                                                 |
|                                                    | VisualBERT<br>(Li et al., 2019b)  | single cross-modal Transformer                                                                                     | image RoI    | COCO Caption<br>(Chen et al., 2015)                                                                        | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> </ol>                                                                                                                            | <ol> <li>1) visual question answering</li> <li>2) visual commonsense reasoning</li> <li>3) natural language visual reasoning</li> <li>4) grounding phrases</li> </ol>                    |
|                                                    | Unicoder-VL<br>(Li et al., 2019a) | single cross-modal Transformer                                                                                     | image RoI    | Conceptual Captions<br>(Sharma et al., 2018)                                                               | <ol> <li>sentence-image alignment</li> <li>masked language modeling</li> <li>masked visual-feature classification</li> </ol>                                                                              | <ol> <li>image-text retrieval</li> <li>zero-shot image-text retrieval</li> </ol>                                                                                                         |
|                                                    | Our VL-BERT                       | single cross-modal Transformer                                                                                     | image RoI    | Conceptual Captions<br>(Sharma et al., 2018)<br>+ BooksCorpus<br>(Zhu et al., 2015)<br>+ English Wikipedia | <ol> <li>masked language modeling</li> <li>masked visual-feature classification</li> </ol>                                                                                                                | <ol> <li>1) visual question answering</li> <li>2) visual commonsense reasoning</li> <li>3) grounding referring expressions</li> </ol>                                                    |

‡ LXMERT is pre-trained on COCO Caption (Chen et al., 2015), VG Caption (Krishna et al., 2017), VG QA (Zhu et al., 2016), VQA (Antol et al., 2015) and GQA (Hudson & Manning, 2019).

• Visual Commonsense Reasoning (VCR)



| Model                                      | $\mathbf{Q} \rightarrow \mathbf{A}$ |      | QA   | $\rightarrow R$ | $Q \rightarrow AR$ |      |
|--------------------------------------------|-------------------------------------|------|------|-----------------|--------------------|------|
|                                            | val                                 | test | val  | test            | val                | test |
| R2C (Zellers et al., 2019)                 | 63.8                                | 65.1 | 67.2 | 67.3            | 43.1               | 44.0 |
| ViLBERT (Lu et al., $2019$ ) <sup>†</sup>  | 72.4                                | 73.3 | 74.5 | 74.6            | 54.0               | 54.8 |
| VisualBERT (Li et al., 2019b) <sup>†</sup> | 70.8                                | 71.6 | 73.2 | 73.2            | 52.2               | 52.4 |
| B2T2 (Alberti et al., 2019) <sup>†</sup>   | 71.9                                | 72.6 | 76.0 | 75.7            | 54.9               | 55.0 |
| VL-BERT <sub>BASE</sub> w/o pre-training   | 73.1                                | -    | 73.8 | -               | 54.2               | -    |
| VL-BERT <sub>BASE</sub>                    | 73.8                                | -    | 74.4 | -               | 55.2               | -    |
| VL-BERT <sub>LARGE</sub>                   | 75.5                                | 75.8 | 77.9 | 78.4            | 58.9               | 59.7 |

Table 1: Comparison to the state-of-the-art methods with single model on the VCR dataset. † indicates concurrent works.

• Visual Question Answering (VQA)

Who is wearing glasses?



Is the umbrella upside down? no

Where is the child sitting?



How many children are in the bed?





| - ALLER CONTRACTOR    |
|-----------------------|
| and the second second |
|                       |
| -                     |
|                       |
|                       |
| All all and           |
|                       |

| Model                                      | test-dev | test-std |
|--------------------------------------------|----------|----------|
| BUTD (Anderson et al., 2018)               | 65.32    | 65.67    |
| ViLBERT (Lu et al., $2019)^{\dagger}$      | 70.55    | 70.92    |
| VisualBERT (Li et al., 2019b) <sup>†</sup> | 70.80    | 71.00    |
| LXMERT (Tan & Bansal, 2019) <sup>†</sup>   | 72.42    | 72.54    |
| VL-BERT <sub>BASE</sub> w/o pre-training   | 69.58    | -        |
| VL-BERT <sub>BASE</sub>                    | 71.16    |          |
| VL-BERT <sub>LARGE</sub>                   | 71.79    | 72.22    |

Table 2: Comparison to the state-of-the-art methods with single model on the VQA dataset. † indicates concurrent works.

• RefCOCO+



Baseline: blue shirt MMI: black shirt visdif: person in stripped shirt

Baseline: tennis player Baseline: man MMI: girl

MMI: man visdif: woman in white

RefCOCO+ testA

visdif: man with glasses visdif+tie: arm with stripped shirt visdif+tie: tennis player visdif+tie: man with glasses RefCOCO+ testB



Baseline: red jacket MMI: red jacket visdif: skier in white visdif+tie: man in white



Baseline: plant MMI: plant that is cut off visdif: tall plant visdif+tie: plant on screen side



Baseline: donut at 3 MMI: glazed donut visdif: donut with hole

Baseline: car with red roof MMI: car visdif: car with headlights

visdif: toilet with lid visdif+tie: toilet with lid visdif+tie: donut with hole visdif+tie: car with headlights

| Model                                    | Groun | d-truth R | egions | Detected Regions |       |       |  |
|------------------------------------------|-------|-----------|--------|------------------|-------|-------|--|
| Widdel                                   | val   | testA     | testB  | val              | testA | testB |  |
| MAttNet (Yu et al., 2018)                | 71.01 | 75.13     | 66.17  | 65.33            | 71.62 | 56.02 |  |
| ViLBERT (Lu et al., $2019)^{\dagger}$    | -     | -         | -      | 72.34            | 78.52 | 62.61 |  |
| VL-BERT <sub>BASE</sub> w/o pre-training | 74.41 | 77.28     | 67.52  | 66.03            | 71.87 | 56.13 |  |
| VL-BERT <sub>BASE</sub>                  | 79.88 | 82.40     | 75.01  | 71.60            | 77.72 | 60.99 |  |
| VL-BERT <sub>LARGE</sub>                 | 80.31 | 83.62     | 75.45  | 72.59            | 78.57 | 62.30 |  |

MMI: toilet

Table 3: Comparison to the state-of-the-art methods with single model on the RefCOCO+ dataset. † indicates concurrent work.

• Ablation study

| Settings                | Masked Language Masked RoI<br>Modeling with Classification with |                  | Sentence-Image<br>Relationship | Tout only    | Tuning       | $\begin{array}{c} VCR \\ Q \rightarrow A  QA \rightarrow R \end{array}$ |      | VQA      | RefCOCO+<br>Detected Regions |
|-------------------------|-----------------------------------------------------------------|------------------|--------------------------------|--------------|--------------|-------------------------------------------------------------------------|------|----------|------------------------------|
| C                       | Visual Clues                                                    | Linguistic Clues | Prediction                     | Corpus       | Fast R-CNN   | val                                                                     | val  | test-dev | val                          |
| w/o pre-training        |                                                                 |                  |                                |              |              | 72.9                                                                    | 73.0 | 69.5     | 62.7                         |
| (a)                     | $\checkmark$                                                    |                  |                                |              |              | 72.9                                                                    | 73.1 | 71.0     | 69.1                         |
| (b)                     | $\checkmark$                                                    | $\checkmark$     |                                |              |              | 73.0                                                                    | 73.1 | 71.1     | 70.7                         |
| (c)                     | $\checkmark$                                                    | $\checkmark$     | $\checkmark$                   |              |              | 72.2                                                                    | 72.4 | 70.3     | 69.5                         |
| (d)                     | $\checkmark$                                                    | $\checkmark$     |                                | $\checkmark$ |              | 73.4                                                                    | 73.8 | 71.1     | 70.7                         |
| VL-BERT <sub>BASE</sub> | $\checkmark$                                                    | $\checkmark$     |                                | $\checkmark$ | $\checkmark$ | 73.8                                                                    | 73.9 | 71.2     | 71.1                         |

Table 4: Ablation study for VL-BERT<sub>BASE</sub> with  $0.5 \times$  fine-tuning epochs.

#### Conclusion

- VL-BERT, a new pre-trainable generic representation for visuallinguistic tasks
  - Utilization of Transformer model as the backbone, instead of ad-hoc taskspecific modules
  - Pre-trainable on large-scale visual-linguistic & text-only corpus
- Future work
  - Better pre-training tasks, to benefit more downstream tasks
  - More powerful generic backbone for visual-linguistic tasks

#### Q&A